
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

OWASP Serbia
A4, A8, A9, A10

Ivan Marković

CTO @ Real Security

27.02.2013

OWASP 2

OWASP Top Ten

OWASP

OWASP Risk Methodology

3

OWASP

OWASP Risk Methodology

4

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

OWASP

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the ‘authorized’ objects for the current user, or

• Hiding the object references in hidden fields

• … and then not enforcing these restrictions on the server side

• This is called presentation layer access control, and doesn’t work

• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

OWASP

Insecure Direct Object References
Illustrated

Attacker notices his acct
parameter is 6065

 ?acct=6065

He modifies it to a
nearby number

 ?acct=6066

Attacker views the
victim’s account
information

https://www.onlinebank.com/user?acct=6065

OWASP

A4 – Avoiding Insecure Direct Object
References

Eliminate the direct object reference
 Replace them with a temporary mapping value (e.g. 1, 2, 3)

 ESAPI provides support for numeric & random mappings
 IntegerAccessReferenceMap & RandomAccessReferenceMap

Validate the direct object reference
Verify the parameter value is properly formatted

Verify the user is allowed to access the target object
 Query constraints work great!

Verify the requested mode of access is allowed to the target
object (e.g., read, write, delete)

http://app?file=1

Report123.xls

http://app?id=7d3J93
Acct:9182374 http://app?id=9182374

http://app?file=Report123.xls
Access

Reference

Map

http://app/?file=1
http://app/?id=7d3J93

OWASP

Demo

8

OWASP

A8 – Failure to Restrict URL Access

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

• Displaying only authorized links and menu choices

• This is called presentation layer access control, and doesn’t work

• Attacker simply forges direct access to ‘unauthorized’ pages

A common mistake …

• Attackers invoke functions and services they’re not authorized for

• Access other user’s accounts and data

• Perform privileged actions

Typical Impact

OWASP

Failure to Restrict URL Access Illustrated

Attacker notices the URL
indicates his role

 /user/getAccounts

He modifies it to another
directory (role)

 /admin/getAccounts, or

 /manager/getAccounts

Attacker views more
accounts than just their
own

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

OWASP

A8 – Avoiding URL Access Control Flaws

 For each URL, a site needs to do 3 things
 Restrict access to authenticated users (if not public)

 Enforce any user or role based permissions (if private)

 Completely disallow requests to unauthorized page types (e.g., config files, log
files, source files, etc.)

 Verify your architecture

 Use a simple, positive model at every layer

 Be sure you actually have a mechanism at every layer

 Verify the implementation

 Forget automated analysis approaches

 Verify that each URL in your application is protected by either

 An external filter, like Java EE web.xml or a commercial product

 Or internal checks in YOUR code – Use ESAPI’s isAuthorizedForURL() method

 Verify the server configuration disallows requests to unauthorized file types

 Use WebScarab or your browser to forge unauthorized requests

OWASP

Demo

12

OWASP

A9 – Insufficient Transport Layer Protection

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data is sent
• On the web, to backend databases, to business partners, internal

communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident

• Business gets sued and/or fined

Typical Impact

OWASP

Insufficient Transport Layer Protection
Illustrated

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1

External attacker

steals credentials

and data off

network

2

Internal attacker

steals credentials

and data from

internal network
Internal Attacker

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

OWASP

A9 – Avoiding Insufficient Transport Layer
Protection

Protect with appropriate mechanisms

Use TLS on all connections with sensitive data

 Individually encrypt messages before transmission

 E.g., XML-Encryption

Sign messages before transmission

 E.g., XML-Signature

Use the mechanisms correctly

Use standard strong algorithms (disable old SSL algorithms)

Manage keys/certificates properly

Verify SSL certificates before using them

Use proven mechanisms when sufficient

 E.g., SSL vs. XML-Encryption

 See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat
_Sheet for more details

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

OWASP

Demo

16

OWASP

A10 – Unvalidated Redirects and Forwards

• And frequently include user supplied parameters in the destination URL

• If they aren’t validated, attacker can send victim to a site of their
choice

Web application redirects are very common

• They internally send the request to a new page in the same application

• Sometimes parameters define the target page

• If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Forwards (aka Transfer in .NET) are common too

• Redirect victim to phishing or malware site

• Attacker’s request is forwarded past security checks, allowing
unauthorized function or data access

Typical Impact

OWASP

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax Refund

Our records show you have an

unclaimed federal tax refund. Please

click here to initiate your claim.

1

Application redirects
victim to attacker’s site

Request sent to vulnerable

site, including attacker’s

destination site as parameter.

Redirect sends victim to

attacker site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a

n
sa

c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e
 M

g
m

t

E
-C

o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s

4 Evil site installs malware on
victim, or phish’s for private
information

Victim clicks link containing unvalidated
parameter

Evil Site

http://www.irs.gov/taxrefund/claim.jsp?year=2006
& … &dest=www.evilsite.com

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

OWASP

Unvalidated Forward Illustrated

2

Attacker sends attack to vulnerable page they have access to 1

Application authorizes
request, which continues
to vulnerable page

Request sent to

vulnerable page which

user does have access to.

Redirect sends user

directly to private page,

bypassing access control.

3 Forwarding page fails to validate
parameter, sending attacker to
unauthorized page, bypassing access
control public void doPost(HttpServletRequest request,

HttpServletResponse response) {
 try {
 String target = request.getParameter("dest"));

 ...
 request.getRequestDispatcher(target

).forward(request, response);
}
catch (...

Filter

 public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

 try {
 // Do sensitive stuff here.
 ...

}
catch (...

OWASP

A10 – Avoiding Unvalidated Redirects and
Forwards
 There are a number of options

1. Avoid using redirects and forwards as much as you can

2. If used, don’t involve user parameters in defining the target URL

3. If you ‘must’ involve user parameters, then either

a) Validate each parameter to ensure its valid and authorized for the current user, or

b) (preferred) – Use server side mapping to translate choice provided to user with actual
target page

 Defense in depth: For redirects, validate the target URL after it is calculated to
make sure it goes to an authorized external site

 ESAPI can do this for you!!

 See: SecurityWrapperResponse.sendRedirect(URL)
 http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/

SecurityWrapperResponse.html#sendRedirect(java.lang.String)

 Some thoughts about protecting Forwards

 Ideally, you’d call the access controller to make sure the user is authorized
before you perform the forward (with ESAPI, this is easy)

 With an external filter, like Siteminder, this is not very practical

 Next best is to make sure that users who can access the original page are ALL
authorized to access the target page.

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html

OWASP

Demo

21

OWASP

Diskusija

22

OWASP

Hvala

23

Kontakt

ivanm@security-net.biz

